Pathology of the endocrine system Endocrine system

Structure and function [Figs. 17-1, 17-2]

- the endocrine system consists of cells that secrete hormones
- endocrine cells are organized as:
 glands [eg. pituitary, thyroid, adrenal, parathyroid glands]
 major component of another organ [eg. testicle]
 scattered cells within other organs [eg. pancreas, intestine)
- hormones are substances made by endocrine cells and released into the blood to act on distant targets
- release of hormones by endocrine cells is controlled by various feedback mechanisms

Overview of pathology

Clinical presentation

- symptoms of endocrine gland disorders are usually due to increased hormone production, decreased hormone production or mass lesions
- hypofunctioning of endocrine cells results in decreased hormone levels
- hyperfunctioning of endocrine cells results in increased hormone levels
- mass lesions are usually due to neoplasia or hyperplasia

Multiple endocrine neoplasia syndromes (MEN)

- certain syndromes are characterized by multiple endocrine neoplasms
 - MEN I (pituitary, parathyroid, pancreatic islet cell neoplasia)
 - MEN IIa (medullary thyroid carcinoma, pheochromocytoma, parathyroid)
 - MEN IIb (IIa + skin and mucosal nerve tumors)

Pituitary gland

Structure

- single endocrine gland located in base of the cranium
- two parts, anterior and posterior

Posterior pituitary (extension of the hypothalamus)

- secretes the hormones ADH, and oxytocin

Anterior pituitary

- secretes growth hormone, thyroid stimulating hormone, adrenocorticotropin hormone, gonadotrophin hormones
- release of hormones controlled by other hormones released by hypothalamus and various feedback loops

Pituitary gland pathology

Pituitary adenoma

- benign neoplasm of endocrine cells in the anterior pituitary
- symptoms due to release of excess hormones or pressure effects of mass (compression of pitutary stalk and/or optic chiasm)
- endocrine effects depend on what hormone produced by the adenoma
- 80% of pituitary adenomas produce hormones

Prolactinoma (LH)

- most common pituitary adenoma produces prolactin
- identified earlier in young reproductive female because present with amenorrhea, galactorrhea, infertility (microadenoma)
- surgery or medical therapy (bromocryptine) to remove

Pituitary gland pathology

Pituitary adenoma

Somatotropic adenomas

- neoplastic cells produce growth hormone
- gigantism results from excess growth hormone before growth plates close
 - generalized increase in body size with disproportionately long legs, arms
- acromegaly results from excess growth hormone after puberty
 - enlargement of hands, feet, jaw, tongue, and soft tissue)

Corticotropic adenoma

- neoplastic cells produce adrenocorticotropin hormone
- Cushing's disease refers to the syndrome resulting from excess glucocorticoid release by the adrenal cortex due to excess ACTH

Pituitary hypofunction

- causes of pituitary hypofunction include
 - congenital defect of pituitary gland (primary dwarfism)
 - destructive tumor (pituitary adenoma)
 - ischemia of the pituitary gland (Sheehan's syndrome)

symptoms

- weakness, \downarrow appetite, \downarrow weight, hypotension, amenorrhea
- secondary hypofunction of target organs

Diabetes insipidus

- lack of ADH
- usually due to destructive lesion in hypothalamus, pituitary
- unable to resorb water, large amounts of hypotonic urine

Thyroid gland

Structure and function

- located in anterior neck, right and left lobes joined by isthmus
- follicular cells produce thyroid hormones (T4, T3)
- release of thyroid hormones controlled by TSH (from pituitary)
- C cells produce calcitonin

Pathology of the thyroid gland

Thyroid hyperfunction (hyperthyroidism) [Figs. 17-5, 17-6]

- major causes are Grave's disease, some multinodular goiters, tumors

symptoms of hyperthyroidism

- restless, nervous, emotional lability, sweating, tachycardia, diarrhea, weight loss with increased appetite

Hyperthyroidism

Grave's disease

- autoimmune disease due to antibodies targeting the TSH receptor on thyroid follicular cells
- AB binds to TSH receptor causing release of thyroid hormones
- more common in females
- associated with other autoimmune diseases
- exopthalmos occurs in Grave's disease

Multinodular goiter

 enlarged, nodular thyroid may produce increased amounts of thyroid hormone (some may be euthyroid or hypofunctioning)

Pathology of the thyroid gland

Thyroid hypofunction (hypothyroidism) [Fig. 17-6]

- major causes are agenesis, surgery, thyroiditis, iodine deficiency Symptoms of hypothyroidism
- cretinism and dwarfism if occurs in perinatal period or infant
- myxedema if occurs in older child or adult
 - · sleepy, tire easily, cold intolerance, constipation, weak
- treat with thyroid hormone replacement

Nodular goiter

- goiter is general term for enlarged thyroid gland (many causes)
- nodular goiter is a form of goiter characterized by multiple nodules
- goiters are usually euthyroid (normal thyroid hormone levels)
- may cause mass effects (surgery if problematic)

Thyroid neoplasms

Adenomas

- benign neoplasms of thyroid follicular cells
- may produce symptoms due to mass effect
- treated by surgery (microscopic examination required to rule out cancer)

- malignant neoplasm of thyroid follicular cells
- two major types:
 - papillary carcinoma (80%)- good prognosis
 - follicular carcinoma (15%)- relatively good prognosis

Parathyroid glands

Structure and function

- usually 4 glands, located in the anterior neck
- produce parathyroid hormone (PTH), involved in calcium homeostasis

Pathology of the parathyroid glands

Hyperparathyroidism[Figs. 17-8, 17-10]

- major causes are parathyroid adenoma and parathyroid hyperplasia symptoms of hyperparathyroidism (hypercalcemia)
- bones, stones, moans, abdominal groans

Hypoparathyroidism

- causes of include surgery, congenital hypoplasia symptoms of hypoparathyroidism (hypocalcemia)
- muscle spasms, irregular heart beat, cardiac arrest (if severe)

Adrenal glands

Structure and function

- right and left glands, located retroperitoneal
- adrenal cortex
- zona glomerulosa (aldosterone)
- zona fasciculata (cortisol)
- zona reticularis (secondary sex steroids)

adrenal medulla

secrete epinephrine, norepinephrine

Pathology of the adrenal gland

Adrenocortical hyperfunction[Figs. 17-11, 17-13]

Hypercortisolism (Cushing's syndrome)

- syndrome due to excess glucocorticoid hormones (cortisol)
- most common cause is exogenous steroids, other causes include
 - adrenal hyperplasia or neoplasia
 - hypersecretion of ACTH by pituitary gland (Cushing's disease)
 - ectopic ACTH (paraneoplastic syndrome)
- dramatic appearance: central obesity, buffalo hump, moon face, striae

Hyperaldosteronism (Conn's syndrome)

- syndrome due to excess mineralocorticoid hormone (aldosterone)
- causes include adrenocortical adenoma and adrenal hyperplasia
- present with hypertension and hypokalemia

Adrenocortical hypofunction

- usually autoimmune destruction of adrenals, also due Tb, malignancy Addison's disease
- autoimmune destruction of adrenal gland
- fatigue, weight loss, nausea, increased infections, low Na, high K

Diseases of Adrenal Medulla

Neuroblastoma

- malignant neoplasm of neuroblasts (primitive cells) in neonates, infant
- treatment with chemotherapy, surgery, radiation (90 % cure)

Pheochromocytoma

- a neoplasm (usually benign) derived from adrenal medulla cells
- diagnosed on basis of dramatic clinical picture, metabolites in urine
- treated by surgery

Endocrine pancreas

Structure

- cells located in islets within the pancreas
- several different types of cells (B cells produce insulin)

Pathology of the endocrine pancreas

Diabetes mellitus

- heterogeneous group of diseases due to inadequate insulin activity
- present with polyuria, polydypsia, weight loss

classification of primary diabetes

- type 1 diabetes (insulin dependent, juvenile onset)
- type 2 diabetes (non-insulin dependent, adult onset)
 - · most common, relative lack of insulin
- impaired glucose tolerance

pathogenesis

- insulin released in response to increased blood sugar
 - insulin required by certain cells for entry of glucose into the cell
- insulin decreases blood glucose levels
- lack of insulin causes hyperglycemia
 - present with polyuria (osmotic diuresis) and resulting polydypsia
 - also fatigue due to inability of glucose to enter certain cells
- striated muscle cells must use anaerobic glycolysis
 - · increased lactic acid
 - · decreased use of fats result in increased free fatty acids
 - free fatty acids oxidized into ketones (acidosis)

Pathology of the endocrine pancreas

Diabetes mellitus

- genetic predisposition
 - type 2 > type 1
- environmental factors

Complications (due to long term uncontrolled hyperglycemia)

- Cardiovascular [increased atherosclerosis (CAD, CVD, distal gangrene)]
- Renal [glomerulosclerosis, pyelonephritis, papillary necrosis]
- Eyes [diabetic microangiopathy of retinal vessels, glaucoma, cataracts]
- Nervous system

Treatment (depends on type)

- type 1 requires insulin
- type 2 diet, oral hypoglycemics, insulin if unable to control

Skin

Structure[Fig. 18-1]

- Epidermis (keratinocytes, melanocytes)
- Dermis (connective tissue, adnexal structures)
- Subcutis (adipose tissue)

Functions

- protection; regulation of body temperature

Basic skin pathology

Congenital diseases

- nevus (mole)
- albinism

External injury

mechanical trauma

thermal injury

burns

- first degree (erythema and swelling)
- second degree (blisters)
- third degree (dermis involved)
- total surface area of burn is important

cold injuries

- frostbite

electrical injury

radiation injury

- sunburn, increased neoplasms

Infectious diseases

- bacterial, fungal, viral
- insect infestations and bites
- acne

Idiopathic and immune diseases

- eczema
- seborrheic dermatitis
- psoriasis

Neoplasms

- Basal cell carcinoma
 - common malignant epithelial neoplasm, excellent prognosis
- Squamous cell carcinoma
 - common malignant epithelial neoplasm, good prognosis

Melanoma [Figs. 18-9]

- malignant neoplasm originating from melanocytes
- different types
 - · lentigo maligna
 - · superficial spreading
 - nodular
 - · acral-lentiginous
- depth of invasion important prognostic factor
- clinical features worrisome for melanoma
 - A asymmetry
 - B border irregularity
 - C color irregularity
 - D diameter > 6 mm