Professor, UBC
Staff Neuropathologist, Vancouver Coastal Health
Consultant Neuropathologist, BC Cancer Agency

 

Location:
Vancouver General Hospital
work phone: 604-875-4111

Dr. Mackenzie is Professor of Pathology and Laboratory Medicine at The University of British Columbia, Consultant Neuropathologist of Vancouver Acute and BC Cancer Agency, and Head of the Neuropathology Division at Vancouver Acute.

Dr. Mackenzie has broad expertise in neuropathology and the use of brain tissue banks in the care of patients with neurological disorders. His research program centers on neuropathology and the molecular genetics of neurodegenerative disease, particularly dementias. He is currently the Canadian representative to the International Society of Neuropathology and is an editorial board member for a number of neuropathology journals.

Academic background

  • Certificate of the Royal College of Physicians and Surgeons of Canada (FRCPC) Neuropathology. 1989
  • MD, University of Western Ontario, London, Medicine. 1984
  • University of Western Ontario, London, Chemistry (Honours). 1980

Publications

RSS PUBMED FEED

Frontotemporal lobar degeneration: current perspectives.

Related Articles

Frontotemporal lobar degeneration: current perspectives.

Neuropsychiatr Dis Treat. 2014;10:297-310

Authors: Riedl L, Mackenzie IR, Förstl H, Kurz A, Diehl-Schmid J

Abstract
The term frontotemporal lobar degeneration (FTLD) refers to a group of progressive brain diseases, which preferentially involve the frontal and temporal lobes. Depending on the primary site of atrophy, the clinical manifestation is dominated by behavior alterations or impairment of language. The onset of symptoms usually occurs before the age of 60 years, and the mean survival from diagnosis varies between 3 and 10 years. The prevalence is estimated at 15 per 100,000 in the population aged between 45 and 65 years, which is similar to the prevalence of Alzheimer's disease in this age group. There are two major clinical subtypes, behavioral-variant frontotemporal dementia and primary progressive aphasia. The neuropathology underlying the clinical syndromes is also heterogeneous. A common feature is the accumulation of certain neuronal proteins. Of these, the microtubule-associated protein tau (MAPT), the transactive response DNA-binding protein, and the fused in sarcoma protein are most important. Approximately 10% to 30% of FTLD shows an autosomal dominant pattern of inheritance, with mutations in the genes for MAPT, progranulin (GRN), and in the chromosome 9 open reading frame 72 (C9orf72) accounting for more than 80% of familial cases. Although significant advances have been made in recent years regarding diagnostic criteria, clinical assessment instruments, neuropsychological tests, cerebrospinal fluid biomarkers, and brain imaging techniques, the clinical diagnosis remains a challenge. To date, there is no specific pharmacological treatment for FTLD. Some evidence has been provided for serotonin reuptake inhibitors to reduce behavioral disturbances. No large-scale or high-quality studies have been conducted to determine the efficacy of non-pharmacological treatment approaches in FTLD. In view of the limited treatment options, caregiver education and support is currently the most important component of the clinical management.

PMID: 24600223 [PubMed - as supplied by publisher]

Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms.

Related Articles

Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms.

Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3620-5

Authors: Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O'Neill MA, Yanai A, Silverman JM, Zeineddine R, Corcoran L, Kumita JR, Luheshi LM, Yousefi M, Coleman BM, Hill AF, Plotkin SS, Mackenzie IR, Cashman NR

Abstract
Amyotrophic lateral sclerosis (ALS) is predominantly sporadic, but associated with heritable genetic mutations in 5-10% of cases, including those in Cu/Zn superoxide dismutase (SOD1). We previously showed that misfolding of SOD1 can be transmitted to endogenous human wild-type SOD1 (HuWtSOD1) in an intracellular compartment. Using NSC-34 motor neuron-like cells, we now demonstrate that misfolded mutant and HuWtSOD1 can traverse between cells via two nonexclusive mechanisms: protein aggregates released from dying cells and taken up by macropinocytosis, and exosomes secreted from living cells. Furthermore, once HuWtSOD1 propagation has been established, misfolding of HuWtSOD1 can be efficiently and repeatedly propagated between HEK293 cell cultures via conditioned media over multiple passages, and to cultured mouse primary spinal cord cells transgenically expressing HuWtSOD1, but not to cells derived from nontransgenic littermates. Conditioned media transmission of HuWtSOD1 misfolding in HEK293 cells is blocked by HuWtSOD1 siRNA knockdown, consistent with human SOD1 being a substrate for conversion, and attenuated by ultracentrifugation or incubation with SOD1 misfolding-specific antibodies, indicating a relatively massive transmission particle which possesses antibody-accessible SOD1. Finally, misfolded and protease-sensitive HuWtSOD1 comprises up to 4% of total SOD1 in spinal cords of patients with sporadic ALS (SALS). Propagation of HuWtSOD1 misfolding, and its subsequent cell-to-cell transmission, is thus a candidate process for the molecular pathogenesis of SALS, which may provide novel treatment and biomarker targets for this devastating disease.

PMID: 24550511 [PubMed - in process]

Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability.

Related Articles

Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability.

Acta Neuropathol. 2014 Mar;127(3):451-8

Authors: Proudfoot M, Gutowski NJ, Edbauer D, Hilton DA, Stephens M, Rankin J, Mackenzie IR

Abstract
Familial cases of frontotemporal dementia (FTD) provide an opportunity to study the pathophysiology of this clinically diverse condition. The C9ORF72 mutation is the most common cause of familial FTD, recent pathological descriptions challenge existing TDP-43 based hypotheses of sporadic FTD pathogenesis. Non-ATG dependent translation of the hexanucleotide expansion into aggregating dipeptide repeat (DPR) proteins may represent a novel pathomechanism. We report detection of the DPR aggregates very early in C9ORF72 FTD development and also describe childhood intellectual disability as a clinical feature preceding dementia. The index case presented with psychiatric symptoms, progressing into typical FTD. Autopsy revealed extensive neuronal DPR aggregates but only minimal TDP-43 pathology. Her intellectually disabled elder son, also carrying the C9ORF72 mutation, died aged 26 years and at autopsy only DPR aggregates without TDP-43 were found. A second son also has intellectual disability, his C9ORF72 status is unknown, but chromosomal microarray revealed no other cause of disability. These cases both extend the existing phenotype of C9ORF72 mutation and highlight the potential significance of DPR translation early in disease development.

PMID: 24445903 [PubMed - in process]

TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia.

Related Articles

TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia.

Acta Neuropathol. 2014 Mar;127(3):397-406

Authors: van Blitterswijk M, Mullen B, Nicholson AM, Bieniek KF, Heckman MG, Baker MC, Dejesus-Hernandez M, Finch NA, Brown PH, Murray ME, Hsiung GY, Stewart H, Karydas AM, Finger E, Kertesz A, Bigio EH, Weintraub S, Mesulam M, Hatanpaa KJ, White Iii CL, Strong MJ, Beach TG, Wszolek ZK, Lippa C, Caselli R, Petrucelli L, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Mackenzie IR, Seeley WW, Grinberg LT, Miller BL, Boylan KB, Graff-Radford NR, Boeve BF, Dickson DW, Rademakers R

Abstract
Variants in transmembrane protein 106 B (TMEM106B) modify the disease penetrance of frontotemporal dementia (FTD) in carriers of progranulin (GRN) mutations. We investigated whether TMEM106B is also a genetic modifier of disease in carriers of chromosome 9 open reading frame 72 (C9ORF72) expansions. We assessed the genotype of 325 C9ORF72 expansion carriers (cohort 1), 586 FTD patients lacking C9ORF72 expansions [with or without motor neuron disease (MND); cohort 2], and a total of 1,302 controls for TMEM106B variants (rs3173615 and rs1990622) using MassArray iPLEX and Taqman genotyping assays. For our primary analysis, we focused on functional variant rs3173615, and employed a recessive genotypic model. In cohort 1, patients with C9ORF72 expansions showed a significantly reduced frequency of carriers homozygous for the minor allele as compared to controls [11.9 vs. 19.1 %, odds ratio (OR) 0.57, p = 0.014; same direction as carriers of GRN mutations]. The strongest evidence was provided by FTD patients (OR 0.33, p = 0.009) followed by FTD/MND patients (OR 0.38, p = 0.017), whereas no significant difference was observed in MND patients (OR 0.85, p = 0.55). In cohort 2, the frequency of carriers homozygous for the minor allele was not significantly reduced in patients as compared to controls (OR 0.77, p = 0.079); however, a significant reduction was observed when focusing on those patients with frontotemporal lobar degeneration and TAR DNA-binding protein 43 inclusions (FTLD-TDP; OR 0.26, p < 0.001). Our study identifies TMEM106B as the first genetic factor modifying disease presentation in C9ORF72 expansion carriers. Homozygosity for the minor allele protects carriers from developing FTD, but not from developing MND; similar effects are seen in FTLD-TDP patients with yet unknown genetic causes. These new findings show that the protective effects of TMEM106B are not confined to carriers of GRN mutations and might be relevant for prognostic testing, and as a promising therapeutic target for the entire spectrum of FTLD-TDP.

PMID: 24385136 [PubMed - in process]

The neuropathology associated with repeat expansions in the C9ORF72 gene.

Related Articles

The neuropathology associated with repeat expansions in the C9ORF72 gene.

Acta Neuropathol. 2014 Mar;127(3):347-57

Authors: Mackenzie IR, Frick P, Neumann M

Abstract
An abnormal expansion of a GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 gene (C9ORF72) is the most common genetic abnormality in familial and sporadic FTLD and ALS and the cause in most families where both, FTLD and ALS, are inherited. Pathologically, C9ORF72 expansion cases show a combination of FTLD-TDP and classical ALS with abnormal accumulation of TDP-43 into neuronal and oligodendroglial inclusions consistently seen in the frontal and temporal cortex, hippocampus and pyramidal motor system. In addition, a highly specific feature in C9ORF72 expansion cases is the presence of ubiquitin and p62 positive, but TDP-43 negative neuronal cytoplasmic and intranuclear inclusions. These TDP-43 negative inclusions contain dipeptide-repeat (DPR) proteins generated by unconventional repeat-associated translation of C9ORF72 transcripts with the expanded repeats and are most abundant in the cerebellum, hippocampus and all neocortex regions. Another consistent pathological feature associated with the production of C9ORF72 transcripts with expanded repeats is the formation of nuclear RNA foci that are frequently observed in the frontal cortex, hippocampus and cerebellum. Here, we summarize the complexity and heterogeneity of the neuropathology associated with the C9ORF72 expansion. We discuss implications of the data to the current classification of FTLD and critically review current insights from clinico-pathological correlative studies regarding the fundamental questions as to what processes are required and sufficient to trigger neurodegeneration in C9ORF72 disease pathogenesis.

PMID: 24356984 [PubMed - in process]

Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency.

Related Articles

Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency.

Hum Mol Genet. 2014 Mar 15;23(6):1467-78

Authors: Lee WC, Almeida S, Prudencio M, Caulfield TR, Zhang YJ, Tay WM, Bauer PO, Chew J, Sasaguri H, Jansen-West KR, Gendron TF, Stetler CT, Finch N, Mackenzie IR, Rademakers R, Gao FB, Petrucelli L

Abstract
Progranulin (GRN) mutations causing haploinsufficiency are a major cause of frontotemporal lobar degeneration (FTLD-TDP). Recent discoveries demonstrating sortilin (SORT1) is a neuronal receptor for PGRN endocytosis and a determinant of plasma PGRN levels portend the development of enhancers targeting the SORT1-PGRN axis. We demonstrate the preclinical efficacy of several approaches through which impairing PGRN's interaction with SORT1 restores extracellular PGRN levels. Our report is the first to demonstrate the efficacy of enhancing PGRN levels in iPSC neurons derived from frontotemporal dementia (FTD) patients with PGRN deficiency. We validate a small molecule preferentially increases extracellular PGRN by reducing SORT1 levels in various mammalian cell lines and patient-derived iPSC neurons and lymphocytes. We further demonstrate that SORT1 antagonists and a small-molecule binder of PGRN588-593, residues critical for PGRN-SORT1 binding, inhibit SORT1-mediated PGRN endocytosis. Collectively, our data demonstrate that the SORT1-PGRN axis is a viable target for PGRN-based therapy, particularly in FTD-GRN patients.

PMID: 24163244 [PubMed - in process]

Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations.

Related Articles

Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations.

Acta Neuropathol. 2013 Dec;126(6):859-79

Authors: Mackenzie IR, Arzberger T, Kremmer E, Troost D, Lorenzl S, Mori K, Weng SM, Haass C, Kretzschmar HA, Edbauer D, Neumann M

Abstract
Hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of frontotemporal dementia and motor neuron disease. Recently, unconventional non-ATG translation of the expanded hexanucleotide repeat, resulting in the production and aggregation of dipeptide repeat (DPR) proteins (poly-GA, -GR and GP), was identified as a potential pathomechanism of C9ORF72 mutations. Besides accumulation of DPR proteins, the second neuropathological hallmark lesion in C9ORF72 mutation cases is the accumulation of TDP-43. In this study, we characterized novel monoclonal antibodies against poly-GA and performed a detailed analysis of the neuroanatomical distribution of DPR and TDP-43 pathology in a cohort of 35 cases with the C9ORF72 mutation that included a broad spectrum of clinical phenotypes. We found the pattern of DPR pathology to be highly consistent among cases regardless of the phenotype with high DPR load in the cerebellum, all neocortical regions (frontal, motor cortex and occipital) and hippocampus, moderate pathology in subcortical areas and minimal pathology in lower motor neurons. No correlation between DPR pathology and the degree of neurodegeneration was observed, while a good association between TDP-43 pathology with clinical phenotype and degeneration in key anatomical regions was present. Our data confirm that the presence of DPR pathology is intimately related to C9ORF72 mutations. The observed dissociation between DPR inclusion body load and neurodegeneration might suggest inclusion body formation as a potentially protective response to cope with soluble toxic DPR species. Moreover, our data imply that alterations due to the C9ORF72 mutation resulting in TDP-43 accumulation and dysmetabolism as secondary downstream effects likely play a central role in the neurodegenerative process in C9ORF72 pathogenesis.

PMID: 24096617 [PubMed - in process]

Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons.

Related Articles

Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons.

Nat Neurosci. 2013 Oct;16(10):1383-91

Authors: Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IR, Huang EJ, Tsai LH

Abstract
Defects in DNA repair have been extensively linked to neurodegenerative diseases, but the exact mechanisms remain poorly understood. We found that FUS, an RNA/DNA-binding protein that has been linked to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, is important for the DNA damage response (DDR). The function of FUS in DDR involved a direct interaction with histone deacetylase 1 (HDAC1), and the recruitment of FUS to double-stranded break sites was important for proper DDR signaling. Notably, FUS proteins carrying familial ALS mutations were defective in DDR and DNA repair and showed a diminished interaction with HDAC1. Moreover, we observed increased DNA damage in human ALS patients harboring FUS mutations. Our findings suggest that an impaired DDR and DNA repair may contribute to the pathogenesis of neurodegenerative diseases linked to FUS mutations.

PMID: 24036913 [PubMed - indexed for MEDLINE]

C9ORF72 repeat expansions in cases with previously identified pathogenic mutations.

Related Articles

C9ORF72 repeat expansions in cases with previously identified pathogenic mutations.

Neurology. 2013 Oct 8;81(15):1332-41

Authors: van Blitterswijk M, Baker MC, DeJesus-Hernandez M, Ghidoni R, Benussi L, Finger E, Hsiung GY, Kelley BJ, Murray ME, Rutherford NJ, Brown PE, Ravenscroft T, Mullen B, Ash PE, Bieniek KF, Hatanpaa KJ, Karydas A, Wood EM, Coppola G, Bigio EH, Lippa C, Strong MJ, Beach TG, Knopman DS, Huey ED, Mesulam M, Bird T, White CL, Kertesz A, Geschwind DH, Van Deerlin VM, Petersen RC, Binetti G, Miller BL, Petrucelli L, Wszolek ZK, Boylan KB, Graff-Radford NR, Mackenzie IR, Boeve BF, Dickson DW, Rademakers R

Abstract
OBJECTIVE: To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases.
METHODS: A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology.
RESULTS: We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations.
CONCLUSIONS: Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members.

PMID: 24027057 [PubMed - indexed for MEDLINE]

Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers.

Related Articles

Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers.

Neurology. 2013 Oct 8;81(15):1322-31

Authors: Jacova C, Hsiung GY, Tawankanjanachot I, Dinelle K, McCormick S, Gonzalez M, Lee H, Sengdy P, Bouchard-Kerr P, Baker M, Rademakers R, Sossi V, Stoessl AJ, Feldman HH, Mackenzie IR

Abstract
OBJECTIVE: In this prospective cohort study, we investigated cerebral glucose metabolism reductions on [(18)F]-fluorodeoxyglucose (FDG)-PET in progranulin (GRN) mutation carriers prior to frontotemporal dementia (FTD) onset.
METHODS: Nine mutation carriers (age 51.5 ± 13.5 years) and 11 noncarriers (age 52.7 ± 9.5 years) from 5 families with FTD due to GRN mutations underwent brain scanning with FDG-PET and MRI and clinical evaluation. Normalized FDG uptake values were calculated with reference to the pons. PET images were analyzed with regions of interest (ROI) and statistical parametric mapping (SPM) approaches.
RESULTS: Compared with noncarriers, GRN mutation carriers had a lowered anterior-to-posterior (AP) ratio of FDG uptake (0.86 ± 0.09 vs 0.92 ± 0.05) and less left-right asymmetry, consistent with an overall pattern of right anterior cerebral hypometabolism. This pattern was observed regardless of whether they were deemed clinically symptomatic no dementia or asymptomatic. Individual ROIs with lowered FDG uptake included right anterior cingulate, insula, and gyrus rectus. SPM analysis supported and extended these findings, demonstrating abnormalities in the right and left medial frontal regions, right insular cortex, right precentral and middle frontal gyri, and right cerebellum. Right AP ratio was correlated with cognitive and clinical scores (modified Mini-Mental State Examination r = 0.74; Functional Rating Scale r = -0.73) but not age and years to estimated onset in mutation carriers.
CONCLUSION: The frontotemporal lobar degenerative process associated with GRN mutations appears to begin many years prior to the average age at FTD onset (late 50s-early 60s). Right medial and ventral frontal cortex and insula may be affected in this process but the specific regional patterns associated with specific clinical variants remain to be elucidated.

PMID: 24005336 [PubMed - indexed for MEDLINE]

TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson's disease.

Related Articles

TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson's disease.

Mol Neurodegener. 2013;8:19

Authors: Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Josephs KA, Knopman DS, White CL, Caselli R, Mackenzie IR, Miller BL, Boczarska-Jedynak M, Opala G, Krygowska-Wajs A, Barcikowska M, Younkin SG, Petersen RC, Ertekin-Taner N, Uitti RJ, Meschia JF, Boylan KB, Boeve BF, Graff-Radford NR, Wszolek ZK, Dickson DW, Rademakers R, Ross OA

Abstract
BACKGROUND: A rare variant in the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) gene has been reported to be a genetic risk factor for Alzheimer's disease by two independent groups (Odds ratio between 2.9-4.5). Given the key role of TREM2 in the effective phagocytosis of apoptotic neuronal cells by microglia, we hypothesized that dysfunction of TREM2 may play a more generalized role in neurodegeneration. With this in mind we set out to assess the genetic association of the Alzheimer's disease-related risk variant in TREM2 (rs75932628, p.R47H) with other related neurodegenerative disorders.
RESULTS: The study included 609 patients with frontotemporal dementia, 765 with amyotrophic lateral sclerosis, 1493 with Parkinson's disease, 772 with progressive supranuclear palsy, 448 with ischemic stroke and 1957 controls subjects free of neurodegenerative disease. A significant association was observed for the TREM2 p.R47H substitution in susceptibility to frontotemporal dementia (OR = 5.06; p-value = 0.001) and Parkinson's disease (OR = 2.67; p-value = 0.026), while no evidence of association with risk of amyotrophic lateral sclerosis, progressive supranuclear palsy or ischemic stroke was observed.
CONCLUSIONS: Our results suggest that the TREM2 p.R47H substitution is a risk factor for frontotemporal dementia and Parkinson's disease in addition to Alzheimer's disease. These findings suggest a more general role for TREM2 dysfunction in neurodegeneration, which could be related to its role in the immune response.

PMID: 23800361 [PubMed - indexed for MEDLINE]

TMEM106B p.T185S regulates TMEM106B protein levels: implications for frontotemporal dementia.

Related Articles

TMEM106B p.T185S regulates TMEM106B protein levels: implications for frontotemporal dementia.

J Neurochem. 2013 Sep;126(6):781-91

Authors: Nicholson AM, Finch NA, Wojtas A, Baker MC, Perkerson RB, Castanedes-Casey M, Rousseau L, Benussi L, Binetti G, Ghidoni R, Hsiung GY, Mackenzie IR, Finger E, Boeve BF, Ertekin-Taner N, Graff-Radford NR, Dickson DW, Rademakers R

Abstract
Frontotemporal lobar degeneration (FTLD) is the second leading cause of dementia in individuals under age 65. In many patients, the predominant pathology includes neuronal cytoplasmic or intranuclear inclusions of ubiquitinated TAR DNA binding protein 43 (FTLD-TDP). Recently, a genome-wide association study identified the first FTLD-TDP genetic risk factor, in which variants in and around the TMEM106B gene (top SNP rs1990622) were significantly associated with FTLD-TDP risk. Intriguingly, the most significant association was in FTLD-TDP patients carrying progranulin (GRN) mutations. Here, we investigated to what extent the coding variant, rs3173615 (p.T185S) in linkage disequilibrium with rs1990622, affects progranulin protein (PGRN) biology and transmembrane protein 106 B (TMEM106B) regulation. First, we confirmed the association of TMEM106B variants with FTLD-TDP in a new cohort of GRN mutation carriers. We next generated and characterized a TMEM106B-specific antibody for investigation of this protein. Enzyme-linked immunoassay analysis of progranulin protein levels showed similar effects upon T185 and S185 TMEM106B over-expression. However, over-expression of T185 consistently led to higher TMEM106B protein levels than S185. Cycloheximide treatment experiments revealed that S185 degrades faster than T185 TMEM106B, potentially due to differences in N-glycosylation at residue N183. Together, our results provide a potential mechanism by which TMEM106B variants lead to differences in FTLD-TDP risk. We studied the p.T185S TMEM106B genetic variant previously implicated in frontotemporal dementia with TAR DNA binding protein 43 pathology caused by progranulin mutations. Our cell culture studies provide evidence that the protective S185 isoform is degraded more rapidly than T185 TMEM106B, potentially due to differences in glycosylation. These findings suggest that low TMEM106B levels might protect against FTLD-TDP in these patients.

PMID: 23742080 [PubMed - indexed for MEDLINE]

Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS.

Related Articles

Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS.

Neurobiol Aging. 2013 Sep;34(9):2235.e11-3

Authors: Ravenscroft TA, Baker MC, Rutherford NJ, Neumann M, Mackenzie IR, Josephs KA, Boeve BF, Petersen R, Halliday GM, Kril J, van Swieten JC, Seeley WW, Dickson DW, Rademakers R

Abstract
The nuclear protein fused in sarcoma (FUS) is found in cytoplasmic inclusions in a subset of patients with the neurodegenerative disorder frontotemporal lobar degeneration (FTLD-FUS). FUS contains a methylated arginine-glycine-glycine domain that is required for transport into the nucleus. Recent findings have shown that this domain is hypomethylated in patients with FTLD-FUS. To determine whether the cause of hypomethylation is the result of mutations in protein N-arginine methyltransferases (PRMTs), we selected 3 candidate genes (PRMT1, PRMT3, and PRMT8) and performed complete sequencing analysis and real-time polymerase chain reaction mRNA expression analysis in 20 FTLD-FUS cases. No mutations or statistically significant changes in expression were observed in our patient samples, suggesting that defects in PRMTs are not the cause of FTLD-FUS.

PMID: 23635657 [PubMed - indexed for MEDLINE]

Angiotropism in primary cutaneous melanoma with brain metastasis: a study of 20 cases.

Related Articles

Angiotropism in primary cutaneous melanoma with brain metastasis: a study of 20 cases.

Am J Dermatopathol. 2013 Aug;35(6):650-4

Authors: Hung T, Morin J, Munday WR, Mackenzie IR, Lugassy C, Barnhill RL

Abstract
Previous clinical and experimental studies suggested that invasion of the brain by metastatic melanoma may follow the external surfaces of vascular channels, that is, angiotropic extravascular migratory metastasis. Such angiotropic invasion seemss analogous to that of neoplastic glial invasion of the nervous system. We, therefore, have retrospectively investigated 20 primary melanoma cases and their respective metastatic brain lesions. The following parameters were analyzed in each primary melanoma: presence of angiotropism, Breslow thickness, Clark level, mitotic rate, sentinel lymph node (SLN) status, and time interval between the primary lesion and the metastasis. The metastatic brain lesions were examined for the presence of angiotropism. Of the 20 cases, 14 showed angiotropism in the primary lesion. The angiotropic group had a significantly deeper Breslow thickness (median 4.4 mm vs. 1.4 mm, P < 0.01) and was more mitotically active (median 11 vs. 4.7 mitoses/mm, P = 0.04). Interestingly, the angiotropic group had an average time lapse of 33 months from the primary lesion to the brain metastasis, whereas the nonangiotropic group had a 57-month time interval. Although the Kaplan-Meier analysis failed to show a survival difference in this small cohort (P = 0.235), there was a trend toward significance. Seven of 20 brain metastases showed angiotropism; however, no significant correlation between angiotropism in the primary melanomas and the corresponding metastatic lesions could be demonstrated. Indeed, angiotropism in the brain metastases was difficult to assess because the available material were generally small partial biopsy samplings and many showed conspicuous necrosis. Ten melanoma patients underwent SLN biopsy. The 3 of 6 positive cases in the angiotropic group had an average time lapse of 32 months from the primary lesion to the brain metastasis, whereas the 4 positive SLN biopsies in the nonangiotropic group had an average of 63 months. This preliminary study of angiotropism in primary melanomas and their corresponding brain metastasis shows a striking trend suggesting that angiotropism in primary melanomas may predict the rapid development of brain metastases. This study also has demonstrated the difficulty in studying angiotropism in melanoma brain metastases because of small sample sizes and abundance of necrotic tissue. The authors are in the process of collecting larger and more representative numbers of melanoma brain metastases for further investigations.

PMID: 23392133 [PubMed - indexed for MEDLINE]

hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations.

Related Articles

hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations.

Acta Neuropathol. 2013 Mar;125(3):413-23

Authors: Mori K, Lammich S, Mackenzie IR, Forné I, Zilow S, Kretzschmar H, Edbauer D, Janssens J, Kleinberger G, Cruts M, Herms J, Neumann M, Van Broeckhoven C, Arzberger T, Haass C

Abstract
Genetic analysis revealed the hexanucleotide repeat expansion GGGGCC within the regulatory region of the gene C9orf72 as the most common cause of familial amyotrophic lateral sclerosis and the second most common cause of frontotemporal lobar degeneration. Since repeat expansions might cause RNA toxicity via sequestration of RNA-binding proteins, we searched for proteins capable of binding to GGGGCC repeats. In vitro-transcribed biotinylated RNA containing hexanucleotide GGGGCC or, as control, AAAACC repeats were incubated with nuclear protein extracts. Using stringent filtering protocols 20 RNA-binding proteins with a variety of different functions in RNA metabolism, translation and transport were identified. A subset of these proteins was further investigated by immunohistochemistry in human autopsy brains. This revealed that hnRNP A3 formed neuronal cytoplasmic and intranuclear inclusions in the hippocampus of patients with C9orf72 repeat extensions. Confocal microcopy showed that these inclusions belong to the group of the so far enigmatic p62-positive/TDP-43 negative inclusions characteristically seen in autopsy cases of diseased C9orf72 repeat expansion carriers. Thus, we have identified one protein component of these pathognomonic inclusions.

PMID: 23381195 [PubMed - indexed for MEDLINE]

Research Interest

  • Neuroscience
  • Aging and Neurodegenerative Disease
  • Neuro-oncology
  • Molecular Pathology